Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Commun Biol ; 7(1): 152, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38316920

RESUMO

Netherton syndrome (NS) is a rare skin disease caused by loss-of-function mutations in the serine peptidase inhibitor Kazal type 5 (SPINK5) gene. Disease severity and the lack of efficacious treatments call for a better understanding of NS mechanisms. Here we describe a novel and viable, Spink5 conditional knock-out (cKO) mouse model, allowing to study NS progression. By combining transcriptomics and proteomics, we determine a disease molecular profile common to mouse models and NS patients. Spink5 cKO mice and NS patients share skin barrier and inflammation signatures defined by up-regulation and increased activity of proteases, IL-17, IL-36, and IL-20 family cytokine signaling. Systemic inflammation in Spink5 cKO mice correlates with disease severity and is associated with thymic atrophy and enlargement of lymph nodes and spleen. This systemic inflammation phenotype is marked by neutrophils and IL-17/IL-22 signaling, does not involve primary T cell immunodeficiency and is independent of bacterial infection. By comparing skin transcriptomes and proteomes, we uncover several putative substrates of tissue kallikrein-related proteases (KLKs), demonstrating that KLKs can proteolytically regulate IL-36 pro-inflammatory cytokines. Our study thus provides a conserved molecular framework for NS and reveals a KLK/IL-36 signaling axis, adding new insights into the disease mechanisms and therapeutic targets.


Assuntos
Síndrome de Netherton , Inibidor de Serinopeptidase do Tipo Kazal 5 , Animais , Humanos , Camundongos , Inflamação , Interleucina-17/genética , Camundongos Knockout , Síndrome de Netherton/genética , Síndrome de Netherton/metabolismo , Síndrome de Netherton/patologia , Peptídeo Hidrolases , Inibidor de Serinopeptidase do Tipo Kazal 5/genética
2.
Mol Biotechnol ; 66(2): 208-221, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37071303

RESUMO

Serine protease inhibitor Kazal-type 5 (SPINK5) has been revealed as a significant prognostic biomarker in oral squamous cell carcinoma (OSCC). However, there is little information regarding the detailed epigenetics mechanism underlying its dysregulation in OSCC. Using the Gene Expression Omnibus database, we identified SPINK5 as a significantly downregulated gene in OSCC tissues. Moreover, SPINK5 inhibited the malignant aggressiveness of HSC3 and squamous cell carcinomas (SCC)9 cells, whereas depletion of SPINK5 using shRNAs led to the opposite trend. The euchromatic histone lysine methyltransferase 2 (EHMT2) was found to bind to the SPINK5 promoter, and EHMT2 repressed the SPINK5 expression. SPINK5 reversed the stimulating effects of EHMT2 on the aggressiveness of HSC3 and SCC9 cells by impairing the Wnt/ß-catenin pathway. Wnt/ß-catenin inhibitor IWR-1 treatment reverted the malignant phenotype of OSCC cells in the presence of short hairpin RNA (sh)-SPINK5. Silencing of EHMT2 inhibited tumor growth and blocked the Wnt/ß-catenin signaling in OSCC, which was reversed by SPINK5 knockdown. Our study shows that SPINK5, mediated by the loss of EHMT2, can inhibit the development of OSCC by inhibiting Wnt/ß-catenin signaling and may serve as a treatment target for OSCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas/metabolismo , Neoplasias Bucais/genética , beta Catenina/genética , beta Catenina/metabolismo , Inibidor de Serinopeptidase do Tipo Kazal 5/genética , Inibidor de Serinopeptidase do Tipo Kazal 5/metabolismo , Linhagem Celular Tumoral , Genes Supressores de Tumor , RNA Interferente Pequeno/genética , Proliferação de Células/genética , Neoplasias de Cabeça e Pescoço/genética , Regulação Neoplásica da Expressão Gênica , Antígenos de Histocompatibilidade , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo
3.
Genes (Basel) ; 14(5)2023 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-37239440

RESUMO

Netherton syndrome (NS) is a rare autosomal recessive disorder caused by SPINK5 mutations, resulting in a deficiency in its processed protein LEKTI. It is clinically characterized by the triad of congenital ichthyosis, atopic diathesis, and hair shaft abnormalities. The SPINK5 (NM_006846.4): c.1258A>G polymorphism (rs2303067) shows a significant association with atopy and atopic dermatitis (AD), which share several clinical features with NS. We describe an NS patient, initially misdiagnosed with severe AD, who carried the heterozygous frameshift (null) mutation (NM_006846.4): c.957_960dup combined with homozygous rs2303067 in the SPINK5 gene. Histopathological examination confirmed the diagnosis, whereas an immunohistochemical study showed normal epidermal expression of LEKTI, despite the genetic findings. Our results corroborate the hypothesis that haploinsufficiency of SPINK5, in the presence of a SPINK5 null heterozygous mutation in combination with homozygous SPINK5 rs2303067 polymorphism, can be causative of an NS phenotype, impairing the function of LEKTI despite its normal expression. Due to the clinical overlap between NS and AD, we suggest performing SPINK5 genetic testing to search for the SPINK5 (NM_006846.4): c.1258A>G polymorphism (rs2303067) and ensure a correct diagnosis, mainly in doubtful cases.


Assuntos
Dermatite Atópica , Eritrodermia Ictiosiforme Congênita , Síndrome de Netherton , Humanos , Mutação da Fase de Leitura , Síndrome de Netherton/genética , Inibidor de Serinopeptidase do Tipo Kazal 5/genética , Mutação , Eritrodermia Ictiosiforme Congênita/genética , Dermatite Atópica/genética
4.
Pediatr Allergy Immunol ; 34(4): e13937, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37102386

RESUMO

OBJECTIVE: Netherton syndrome (NS) (OMIM:256500) is a very rare autosomal recessive multisystem disorder mostly affecting ectodermal derivatives (skin and hair) and immune system. It is caused by biallelic loss-of-function variants in the SPINK5 gene, encoding the protease inhibitor lymphoepithelial Kazal-type-related inhibitor (LEKTI). MATERIAL, METHODS AND RESULTS: Here, we describe NS clinical and genetic features of homogenous patient group: 9 individuals from 7 families with similar ethnic background and who have the same SPINK5 variant (NM_006846.4: c.1048C > T, p.(Arg350*)) in homozygous or compound heterozygous states, suggesting that it is a common founder variant in Latvian population. Indeed, we were able to show that the variant is common in general Latvian population, and it shares the same haplotype among the NS individual. It is estimated that the variant arose >1000 years ago. Clinically, all nine patients exhibited typical NS skin changes (scaly erythroderma, ichthyosis linearis circumflexa, itchy skin), except for one patient who has a different skin manifestation-epidermodysplasia. Additionally, we show that developmental delay, previously underrecognized in NS, is a common feature among these patients. CONCLUSIONS: This study shows that the phenotype of NS individuals with the same genotype is highly homogeneous.


Assuntos
Síndrome de Netherton , Humanos , Síndrome de Netherton/genética , Inibidor de Serinopeptidase do Tipo Kazal 5/genética , Letônia , Mutação , Pele
6.
J Dermatol ; 50(4): 494-499, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36419401

RESUMO

Netherton syndrome (NS) is a rare disorder of cornification associated with high morbidity. It is caused by bi-allelic mutations in SPINK5 encoding the serine protease inhibitor LEKTI. Previous studies have shown Th17 skewing with IL-23 upregulation in NS, raising the possibility that targeting these inflammatory pathways may alleviate disease manifestations. We ascertained the therapeutic efficacy of six doses of ustekinumab administered to three patients with NS over a period of 13 months using the Ichthyosis Area and Severity Index (IASI), the Dermatology Life Quality Index (DLQI), a visual analogue scale (VAS) for itch and the peak-pruritus numeric rating scale (PP-NRS). Histopathology analysis including CD3, CD4, CD8 and interleukin 17 (IL-17) immunostaining, was performed at baseline and 4 weeks following the last ustekinumab dose. Total IASI scores were reduced by 28% in two patients at week 16 with sustained response by week 56. No consistent improvement in DLQI, VAS for itch and PP-NRS scores was observed. The inflammatory infiltrate and the degree of acanthosis were slightly reduced at week 56 as compared to baseline. No significant change in immunostaining of the various inflammatory markers was observed at week 56. In conclusion, this case series did not demonstrate a significant therapeutic effect of ustekinumab in NS.


Assuntos
Ictiose , Síndrome de Netherton , Humanos , Síndrome de Netherton/tratamento farmacológico , Síndrome de Netherton/genética , Ustekinumab/uso terapêutico , Ictiose/genética , Mutação , Inibidor de Serinopeptidase do Tipo Kazal 5/genética
7.
Eur J Dermatol ; 32(4): 459-463, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-36301754

RESUMO

Background: Netherton syndrome is a rare but severe autosomal recessive disorder with dominant impaired skin barrier function, caused by mutations in the SPINK5 (serine protease inhibitor Kazal-type 5) gene, which encodes LEKTI (lymphoepithelial Kazal-type-related inhibitor). Objectives: To establish a murine model of Netherton syndrome based on CRISPR/Cas9 gene editing technology. Materials & Methods: Spink5-sgRNA was designed to target exon 3 of the mouse Spink5 gene. Cas9 mRNA and sgRNA were microinjected into the zygotes of C57BL/6J mice. Spink5 homozygous knockout mice were born from a heterozygous intercross, and the phenotype of these mice was compared with wild-type regarding gross morphology, histopathology and immunofluorescent detection of LEKTI. Results: Following microinjection of zygotes using the CRISPR/Cas9 system, sequencing demonstrated a 22-bp deletion at exon 3 of the mouse Spink5 gene. Histological investigation revealed complete detachment of the stratum corneum from the underlying granular layer and an absence of LEKTI in skin from Spink5 homozygous knockout mice. Conclusion: The 22-bp deleted Spink5 transgenic mouse model demonstrates the clinical phenotype and genotype of human Netherton syndrome, representing a useful tool for future gene correction and skin barrier/inflammation studies.


Assuntos
Dermatite , Síndrome de Netherton , Animais , Humanos , Camundongos , Sistemas CRISPR-Cas , Dermatite/genética , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Camundongos Knockout , Síndrome de Netherton/genética , Síndrome de Netherton/patologia , Proteínas Secretadas Inibidoras de Proteinases/genética , Inibidor de Serinopeptidase do Tipo Kazal 5/genética
9.
J Healthc Eng ; 2022: 2209979, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35368958

RESUMO

This study aimed to elucidate how SPINK5 affects the malignant phenotypes of NSCLC and the molecular mechanism. NSCLC and adjacent normal tissues were collected to detect the differential level of SPINK5. The influence of SPINK5 on pathological indicators of NSCLC was analyzed. Cellular functions of NSCLC cells overexpressing SPINK5 were assessed by CCK-8, EdU, and transwell assay. By confirming the downstream target of SPINK5, its molecular mechanism on regulating NSCLC was finally explored through rescue experiments. SPINK5 was lowly expressed in NSCLC tissues, and it predicted tumor staging and lymphatic metastasis. In vitro overexpression of SPINK5 declined proliferative and migratory rates in NSCLC cells. PSIP1 was verified as the target gene binding SPINK5, and they displayed a negative correlation in NSCLC tissues. Overexpression of PSIP1 was able to reverse the inhibited proliferative and migratory potentials in NSCLC cells overexpressing SPINK5. SPINK5 level has a close relation to tumor staging and lymphatic metastasis in NSCLC. It serves as a tumor-suppressor gene that inhibits proliferation and migration of NSCLC through negatively regulating PSIP1.


Assuntos
Carcinoma , Movimento Celular , Neoplasias Pulmonares , MicroRNAs , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Carcinoma/genética , Carcinoma/patologia , Movimento Celular/genética , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Genes Supressores , Humanos , Pulmão/patologia , Neoplasias Pulmonares/genética , MicroRNAs/genética , Inibidor de Serinopeptidase do Tipo Kazal 5/genética , Inibidor de Serinopeptidase do Tipo Kazal 5/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
S D Med ; 75(12): 554-556, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36893349

RESUMO

Netherton syndrome (NS) is a rare autosomal recessive condition caused by mutations in the serine peptidase inhibitor, Kazal type 5 (SPINK5) gene which encodes for a serine protease inhibitor, lymphoepithelial Kazal-typerelated inhibitor (LEKT1). NS is characterized by a triad of ichthyosiform erythroderma, trichorrhexis invaginata, and atopic diathesis with elevated IgE levels. The syndrome typically presents in infancy, where life-threatening complications are frequent, and evolves into a less severe condition with milder clinical symptoms in adulthood. This case report details the clinical history and genetic testing of a mother and two children with clinically symptomatic and genetically proven NS.


Assuntos
Eritrodermia Ictiosiforme Congênita , Síndrome de Netherton , Humanos , Criança , Feminino , Síndrome de Netherton/complicações , Síndrome de Netherton/diagnóstico , Síndrome de Netherton/genética , Mães , Inibidor de Serinopeptidase do Tipo Kazal 5/genética , Eritrodermia Ictiosiforme Congênita/genética , Mutação , Inibidores de Serino Proteinase/genética
11.
J Dermatol ; 49(1): 165-167, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34862657

RESUMO

Netherton syndrome (NS) is a rare autosomal recessive genetic disease caused by SPINK5 gene mutation without specific effective therapies available. We report a case of NS confirmed by whole exome sequencing of DNA using peripheral blood, and Sanger sequencing found two new mutations associated with her clinical presentation located at SPINK5 gene c.1220+5G>A from her father and c.1870delA from her mother. The patient was treated with dupilumab (600 mg at week 0, then 300 mg every 2 weeks, s.c.). The clinical manifestation and dermoscopic images of the patient's hair showed remarkable improvement after dupilumab treatment with no adverse effects. We also reviewed previous reports to learn more about the therapeutic effect and adverse reactions of NS treated with dupilumab.


Assuntos
Síndrome de Netherton , Anticorpos Monoclonais Humanizados , Feminino , Humanos , Mutação , Síndrome de Netherton/diagnóstico , Síndrome de Netherton/tratamento farmacológico , Síndrome de Netherton/genética , Proteínas Secretadas Inibidoras de Proteinases/genética , Inibidor de Serinopeptidase do Tipo Kazal 5/genética
12.
Exp Dermatol ; 31(2): 223-232, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34378233

RESUMO

Skin barrier dysfunction induces skin inflammation. Signal transducer and activator of transcription 3 (STAT3) is known to be involved in Th17-mediated immune responses and barrier integrity in the cornea and intestine; however, its role in the skin barrier remains largely unknown. In this study, we elucidated the potential role of STAT3 in the skin barrier and its effect on kallikrein-related peptidase 5 (KLK5) and serine protease inhibitor Kazal-type 5 (SPINK5) expression using a mouse model with keratinocyte-specific ablation of STAT3. Keratinocyte-specific loss of STAT3 induced a cutaneous inflammatory phenotype with pruritus and intense scratching behaviour in mice. Transcriptomic analysis revealed that the genes associated with impaired skin barrier function, including KLK5, were upregulated. The effect of STAT3 on KLK5 expression in keratinocytes was not only substantiated by the increase in KLK5 expression following treatment with STAT3 siRNA but also by its decreased expression following STAT3 overexpression. Overexpression and IL-17A-mediated stimulation of STAT3 increased the expression of SPINK5, which was blocked by STAT3 siRNA. These results suggest that the expression of SPINK5 and KLK5 in keratinocytes could be dependent on STAT3 and that STAT3 might play an essential role in the maintenance of skin barrier homeostasis.


Assuntos
Calicreínas , Fator de Transcrição STAT3 , Calicreínas/genética , Calicreínas/metabolismo , Queratinócitos/metabolismo , RNA Interferente Pequeno/genética , Fator de Transcrição STAT3/metabolismo , Inibidor de Serinopeptidase do Tipo Kazal 5/genética
13.
J Allergy Clin Immunol ; 149(4): 1358-1372, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34543653

RESUMO

BACKGROUND: Netherton syndrome (NS) is a rare recessive skin disorder caused by loss-of-function mutations in SPINK5 encoding the protease inhibitor LEKTI (lymphoepithelial Kazal-type-related inhibitor). NS patients experience severe skin barrier defects, display inflammatory skin lesions, and have superficial scaling with atopic manifestations. They present with typical ichthyosis linearis circumflexa (NS-ILC) or scaly erythroderma (NS-SE). OBJECTIVE: We used a combination of several molecular profiling methods to comprehensively characterize the skin, immune cells, and allergic phenotypes of NS-ILC and NS-SE patients. METHODS: We studied a cohort of 13 patients comprising 9 NS-ILC and 4 NS-SE. RESULTS: Integrated multiomics revealed abnormal epidermal proliferation and differentiation and IL-17/IL-36 signatures in lesion skin and in blood in both NS endotypes. Although the molecular profiles of NS-ILC and NS-SE lesion skin were very similar, nonlesion skin of each disease subtype displayed distinctive molecular features. Nonlesion and lesion NS-SE epidermis showed activation of the type I IFN signaling pathway, while lesion NS-ILC skin differed from nonlesion NS-ILC skin by increased complement activation and neutrophil infiltration. Serum cytokine profiling and immunophenotyping of circulating lymphocytes showed a TH2-driven allergic response in NS-ILC, whereas NS-SE patients displayed mainly a TH9 axis with increased CCL22/MDC and CCL17/TARC serum levels. CONCLUSIONS: This study confirms IL-17/IL-36 as the predominant signaling axes in both NS endotypes and unveils molecular features distinguishing NS-ILC and NS-SE. These results identify new therapeutic targets and could pave the way for precision medicine of NS.


Assuntos
Hipersensibilidade , Síndrome de Netherton , Dermatopatias , Epiderme/patologia , Humanos , Hipersensibilidade/patologia , Interferon-alfa , Interleucina-17/genética , Síndrome de Netherton/genética , Proteínas Secretadas Inibidoras de Proteinases/genética , Inibidor de Serinopeptidase do Tipo Kazal 5/genética , Pele/patologia , Dermatopatias/patologia
14.
Sultan Qaboos Univ Med J ; 21(4): 652-656, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34888090

RESUMO

Netherton syndrome (NS) is an autosomal recessive primary immunodeficiency. It is characterised by substantial skin barrier defects and is often misdiagnosed as severe atopic dermatitis or hyper-immunoglobulin E syndrome. Although more than 80 NS-associated pathogenic mutations in the serine peptidase inhibitor kazal type 5 (SPINK5) gene have been reported worldwide, only one has been reported in the Arab population to date. We report the case of a novel association between the c.1887+1G>A mutation in the SPINK5 gene and NS in an Omani-Arab patient born in 2014 who was managed at a paediatric immunology clinic in Muscat, Oman. Accurate genetic diagnosis facilitated tailored clinical management of the index patient and enabled the provision of genetic counselling and offering of future reproductive options to the individuals related to the index patient.


Assuntos
Síndrome de Netherton , Criança , Humanos , Mutação , Síndrome de Netherton/diagnóstico , Síndrome de Netherton/genética , Omã , Proteínas Secretadas Inibidoras de Proteinases/genética , Inibidor de Serinopeptidase do Tipo Kazal 5/genética
16.
Genes (Basel) ; 12(3)2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33807935

RESUMO

BACKGROUND: Ichthyoses are a large group of hereditary cornification disorders, which are both clinically and etiologically heterogeneous and affect mostly all the skin surface of the patients. Ichthyosis has its origin in an ancient Greek word "ichthys" meaning fish, this is because the ichthyosis patients have dry, thickened, and scaly skin. There is an excess accumulation of epidermal cells resulting in the appearance of continuous and widespread scales on the body. There are many varieties of ichthyosis with a broad spectrum of intensity, severity, and associated symptoms, most of them are extremely rare. Ichthyosis vulgaris is the most frequently occurring type of ichthyoses. METHOD: The present study consists of four Pakistani ichthyosis families (A, B, C, and D). Whole exome sequencing (WES) approach was used to identify the pathogenic sequence variants in probands. The segregation of these variants in other participants was confirmed by Sanger sequencing. RESULTS: Total four variants including, two splice site (TGM1: c.2088 + 1G > A) and (SPINK5: c.882 + 1G > T), a missense (SULT2B1: c.419C > T; p. Ala140Val), and a nonsense (FLG: c.6109C > T; p. Arg2037Ter) variant were identified in families A, C, B, and D, respectively, as causative mutations responsible for ichthyosis in these families. CONCLUSION: Our study unravels the molecular etiology of the four Pakistani ichthyosis families and validates the involvement of TGM1, SULT2B1, SPINK5, and FLG, in the etiology of different forms of ichthyosis. In addition, this study also aims to give a detailed clinical report of the studied ichthyosis families.


Assuntos
Ictiose/genética , Mutação , Proteínas S100/genética , Inibidor de Serinopeptidase do Tipo Kazal 5/genética , Sulfotransferases/genética , Transglutaminases/genética , Adulto , Estudos de Casos e Controles , Criança , Consanguinidade , Feminino , Proteínas Filagrinas , Predisposição Genética para Doença , Homozigoto , Humanos , Masculino , Paquistão , Linhagem , Fenótipo , Sequenciamento do Exoma
17.
Mol Genet Genomic Med ; 9(3): e1611, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33534181

RESUMO

BACKGROUND: Netherton syndrome (NS) is a genodermatosis caused by loss-of-function mutations in SPINK5, resulting in aberrant LEKTI expression. METHOD: Next-generation sequencing of SPINK5 (NM_001127698.1) was carried out and functional studies were performed by immunofluorescence microscopy of a lesional skin biopsy using anti-LEKTI antibodies. RESULTS: We describe a novel SPINK5 likely pathogenic donor splice site variant (NM_001127698.1:c.2015+5G>A) in a patient with NS and confirm its functional significance by demonstrating complete loss of LEKTI expression in lesional skin by immunofluorescence analysis. CONCLUSION: The 2015+5G>A is a novel, likely pathogenic variant in NS. Herein we review and assimilate documented SPINK5 pathogenic variants and discuss possible genotype-phenotype associations in NS.


Assuntos
Síndrome de Netherton/genética , Inibidor de Serinopeptidase do Tipo Kazal 5/genética , Pré-Escolar , Humanos , Masculino , Mutação , Síndrome de Netherton/patologia , Fenótipo , Splicing de RNA
18.
Stem Cell Res ; 51: 102213, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33556917

RESUMO

Netherton syndrome (NS) is a rare, autosomal recessive hereditary skin disease caused by mutations in SPINK5 gene, characterized with severe skin barrier damage. A human induced pluripotent stem cell (iPSC) line has been established with electroporation method from urine-derived cells of a NS patient carrying a compound heterozygous mutation c.2260A > T (p.K754X) and c.2423C > T(p.T808I) in SPINK5 gene. This iPSC line may serve as a valuable model for the research of pathogenesis of NS, and the mechanisms and therapeutics for skin barrier damage.


Assuntos
Células-Tronco Pluripotentes Induzidas , Síndrome de Netherton , Humanos , Mutação , Síndrome de Netherton/genética , Proteínas Secretadas Inibidoras de Proteinases/genética , Inibidor de Serinopeptidase do Tipo Kazal 5/genética
19.
Mol Genet Genomic Med ; 9(3): e1600, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33452875

RESUMO

BACKGROUND: Netherton syndrome (NS) is an autosomal recessive disorder due to mutations in the SPINK5 gene. Here, we report the first case of NS caused by a large genomic deletion. METHODS: We present the clinical data of a 3-year-old Chinese boy who was initially misdiagnosed with severe atopic dermatitis. Subsequently, the patient presented with typical ichthyosis linearis circumflexa and had representative hair shaft of trichorrhexis invaginate, which alerted the physician of the high possibility of NS. A genomic DNA sample was extracted from peripheral blood and whole-exome sequencing (WES) was performed. Sanger sequencing and quantitative real-time polymerase chain reaction (qRT-PCR) were performed to verify the mutation and genomic deletion, respectively, in the pedigree. RESULTS: WES revealed compound heterozygous mutations in SPINK5, including a c.80A>G mutation and a ~275 Kb-sized genomic deletion (chr5:147443576-147719312). The c.80A>G mutation was verified by Sanger sequencing in the pedigree. The father had the same heterozygous mutation; however, the mutation was absent in the proband's mother. The qRT-PCR results identified a large deletion (chr5:147444834-147445034) in SPINK5 in the proband and his mother. The eruptions improved remarkably after intravenous immunoglobulin (IVIG) therapy. CONCLUSIONS: This is the first observation of NS caused by a large deletion. Our findings have important implications for mutation screening and genetic counseling in NS. Our report also verifies and supports the safety and efficacy of IVIG therapy in patients with NS.


Assuntos
Síndrome de Netherton/genética , Mutação Puntual , Deleção de Sequência , Inibidor de Serinopeptidase do Tipo Kazal 5/genética , Adulto , Pré-Escolar , Feminino , Heterozigoto , Humanos , Imunoglobulinas Intravenosas/uso terapêutico , Masculino , Síndrome de Netherton/patologia , Síndrome de Netherton/terapia
20.
J Med Genet ; 58(7): 442-452, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32709676

RESUMO

BACKGROUND: Otitis media (OM) susceptibility has significant heritability; however, the role of rare variants in OM is mostly unknown. Our goal is to identify novel rare variants that confer OM susceptibility. METHODS: We performed exome and Sanger sequencing of >1000 DNA samples from 551 multiethnic families with OM and unrelated individuals, RNA-sequencing and microbiome sequencing and analyses of swabs from the outer ear, middle ear, nasopharynx and oral cavity. We also examined protein localisation and gene expression in infected and healthy middle ear tissues. RESULTS: A large, intermarried pedigree that includes 81 OM-affected and 53 unaffected individuals cosegregates two known rare A2ML1 variants, a common FUT2 variant and a rare, novel pathogenic variant c.1682A>G (p.Glu561Gly) within SPINK5 (LOD=4.09). Carriage of the SPINK5 missense variant resulted in increased relative abundance of Microbacteriaceae in the middle ear, along with occurrence of Microbacteriaceae in the outer ear and oral cavity but not the nasopharynx. Eight additional novel SPINK5 variants were identified in 12 families and individuals with OM. A role for SPINK5 in OM susceptibility is further supported by lower RNA counts in variant carriers, strong SPINK5 localisation in outer ear skin, faint localisation to middle ear mucosa and eardrum and increased SPINK5 expression in human cholesteatoma. CONCLUSION: SPINK5 variants confer susceptibility to non-syndromic OM. These variants potentially contribute to middle ear pathology through breakdown of mucosal and epithelial barriers, immunodeficiency such as poor vaccination response, alteration of head and neck microbiota and facilitation of entry of opportunistic pathogens into the middle ear.


Assuntos
Microbiota , Otite Média/genética , Otite Média/microbiologia , Inibidor de Serinopeptidase do Tipo Kazal 5/genética , Adulto , Animais , Bactérias/classificação , Bactérias/genética , Criança , Suscetibilidade a Doenças/microbiologia , Orelha Externa/microbiologia , Orelha Média/microbiologia , Exoma , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Camundongos , Boca/microbiologia , Nasofaringe/microbiologia , Linhagem , Análise de Sequência de DNA , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...